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Announcements

■ Final project:
● Groups of 1-4 students.
● Three options for the theme:

i. Do a literature review on the SOTA of some Computer Vision task (like Image 
Classification for example).

ii. Try to solve any problem of your choice using Deep Learning (it does not need to be in 
Computer Vision, it can be involving audio, text, etc.)

iii. Implement a software that uses DL (does not need to be related to CV).
● The teams should send a proposal the Dec 4th with a problem statement, motivation, the main 

tasks and how each student will contribute to it.
● The presentation will be in person on the day/time for our final exam, and it should last for at 

least 8 min, such that each student member presents for at least 3 min. It should also present 
some sort of demonstration. If some student can’t be present, they should join via zoom (or ask 
me for an exception).

● More information on it on the Syllabus and on the website.



■ KLAVIERFEST!

Announcements



Announcements

■ Project Proposal:
● Due on Dec 4th, and there is a submission link on canvas,
● Remember it counts as part of the grade!

■ Info about late submissions on the website (more for next year, actually).
■ Interesting application of dense pose estimation:

http://www.youtube.com/watch?v=Rv0qBbJq4qQ


(Tentative) Lecture Roadmap

Basics of Deep Learning

Deep Learning and Computer Vision in Practice

Intro to Object 
Detection

Fast Object 
Detection

Intro to Image 
Segmentation

Autoencoders  Advanced GANs 

Applications of Detection 
and Segmentation

Image Generation 
with GANs

The Attention 
Mechanism

Transformers 
and ChatGPT

Intro to 
Computer Vision

Linear Classifiers and 
Perceptron

Multilayer Perceptron Pytorch I – MLPs Convolutional Neural 
Networks

Optimization 
in Deep Learning

Pytorch II – Images and 
Regularization

Data Augmentation 
and Deep CNNs

Inception Net and 
what CNNs learn 

Transfer Learning and 
Residual Nets

Adversarial Examples 
and Self-supervision

Intro to 
MLOps

Image Generation 
by Prompt

Misc. 
Topics



More interesting GANs

■ Last time we saw how GANs can generate new 
digits from the MNIST dataset and new faces.

■ Although interesting, these results were not 
realist enough compared to more modern GAN 
architectures.

■ Today, we’ll see how modern GANs (such as 
StyleGAN) are able to generate visually 
stunning high-resolution face images! 

■ Before that, we’ll also see how to conditionally 
generate new images using GANs which will 
provide us with tools to solve many other 
problems in image generation.

New faces generated by StyleGAN 



Conditional GANs

■ All GAN models we have seen so far model a probability 
density in high dimension and provide means to sample 
according to it, which is useful for image synthesis only.

■ However, most of the practical applications require the ability 
to sample a conditional distribution, i.e., sample new data 
conditioned on some information we have at our disposal.

■ For example, we may want to sample a datapoint conditioned 
on its class (I may want to sample only new 7’s instead of any 
random digit). 

■ Conditional GAN, published in 2014, was conceived to adapt 
our previous, simple GAN architecture (called Vanilla GAN) to 
this setting. New MNIST digits generated 

according to their classes.

https://arxiv.org/pdf/1411.1784.pdf


Conditional GANs

Generator
Network (G)

z

Dataset of Real 
Images

Discriminator
Network (D)

Is it Fake or 
Real?

G(z)

■ Let’s first review our previous GAN approach:
● We have a Generator Network G that takes in a random vector z and produces a new, 

generated image G(z).
● We also have a Discriminator Network D that takes in an image as its input and classifies it in 

fake (i.e., generated by G) or real (i.e., coming from an image dataset).
● The goal is twofold: (1) train a very good discriminator network and (2) train a generator that 

beats this discriminator.
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K + 1 Channels 

One channel 
filled with 1’s for 
the class of the 

image.

The other 
channels are 
filled with 0’s

Input of D■ In Conditional GAN, the same training approach is 
taken, but now both generator and discriminator 
inputs will carry class information.

■ To do that, we just need to “add more data” to both 
inputs. Say we have K classes (K = 10 for MNIST):

● For the Generator input, append to z a vector of K 
dimensional one-hot encoding of the class you want 
the generated image to be from.

● For the Discriminator input, append K more 
channels to the input image such that they work as 
an one-encoding of the that image’s class (from 
either the image dataset or the generator’s input)*. 

* Note that, even if the image is realistic, but the class that image is attached to is not 
the correct one the discriminator here should output “fake”.



Image-to-Image Translation

■ We can use the same principle of 
conditioning the generation to a class 
to create interesting conditions.

■ For example, we may want to generate 
a realistic image conditioned in a 
certain edge map, i.e., a new image 
that has its edges given by the user.

■ This approach will be very useful for the task of Image-to-Image Translation:

Image-to-image translation is the task of taking images from one domain and 
transforming them so they have the characteristics of images from another domain.

■ In our example above, we converted an image in the domain of edges to the domain of 
realistic RBG images.

Edge Map Edge Source New Image



Pix2Pix

G

D DFake Real

z G(z) x

Training on fake data Training on real data

■ Published in 2016, the Pix2Pix strategy to solve image to image translation involved a 
GAN network that used the concepts from Conditional GANs.

■ Here, the difference is that the generator receives an image input z in one domain (edge 
map, for example) and outputs the corresponding image on the other domain.

■ The discriminator is then tasked to check if the pairings edge map/image are realistic.

https://arxiv.org/pdf/1611.07004.pdf


Pix2Pix

Edges to Photos

Input Ground Truth Output Input Ground Truth Output



Pix2Pix

Drawings to Photo

Input Output Input Output Input Output Input Output

■ Note that the edge maps don’t need to be realistic. These are the results from when you 
input a line drawing to generator trained on edge maps.



Pix2Pix Applications

■ Pix2Pix has been 
applied in translation 
domains beyond that of 
edges to RGB images 
(but always following 
the same training 
strategy).

■ Here, you can have the 
generator generate 
aerial photos from a 
map or maps from 
aerial photos.

Map to Aerial Photo Aerial Photo to Map

Input Output Input Output



Pix2Pix Applications

■ In a similar way, Pix2Pix was used to generate new building facades according to a 
image of facade labels, i.e., positions of windows, doors, roofs, etc.

■ You can actually try out some of these algorithms yourself! In this link, you’ll find the 
edge to image and the facade labels to image applications.

Facade labels to Photo

Input

Ground Truth Output Input Ground Truth OutputInput

https://affinelayer.com/pixsrv/


Pix2Pix Applications

■ Pix2Pix can be applied to image generation conditioned on a given semantic 
segmentation.

Segmentation to Photo

Input Ground Truth Output Input Ground Truth Output



Pix2Pix Applications

■ The principles of Pix2Pix have also been applied to many artistic endeavors.

GauGAN art generatorLearning to see work piece

http://www.youtube.com/watch?v=p5U4NgVGAwg
http://www.youtube.com/watch?v=MXf7jycXLgM


Pix2Pix Applications

Ground Truth Output Input Ground Truth OutputInput

Thermal Image to Photo

Ground Truth Output Input Ground Truth OutputInput

Day Image to Night Image



Pix2Pix Applications

Season changer



Pix2Pix Applications

Input Output Input Output Input Output

Photo Enhancement (post-hoc focusing) and Painting Style Transfer

Input Monet Van Gogh Cezanne Ukyio-e



Exercise (in pairs)

■ Play with Pix2Pix! You can go to this link and try out some of their algorithms. What do 
your notice when you play with it?

https://affinelayer.com/pixsrv/


Getting high resolution images

■ We saw that using GANs we can generate small images in various settings, but how can 
one generate high resolution images (images that contain fine level visual features)?

■ Standard GANs could work here, but they would not be practical to generate high quality 
images (1024 × 1024 size) because of their architecture limitations.

■ The first attempt to solve this issue was proposed in 2017 and was called ProGAN 
(Progressive Generative Adversarial Networks).

Generated face using ProGAN.

https://arxiv.org/pdf/1710.10196v3.pdf


ProGAN

■ ProGAN is based on an efficient 
way (in terms of training time) to 
train a GAN for High Res images.

■ Instead of attempting to train all 
layers of the generator and 
discriminator at once, ProGAN trains 
them one layer at a time, to learn 
progressively higher resolution 
versions of the images.

■ When the images generated in 
given resolution are good enough, 
we proceed to the next resolution. 
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ProGAN

■ The progressive growth in ProGAN time allowed 
the training on much bigger datasets of very 
large images in a much quicker time compared to 
when the layers were fixed.

■ Although ProGAN expanded vanilla GANs ability 
to generate high-res images, still lacked the 
control over the styling of the output.

■ This means that we couldn’t change specific 
features such pose, face shape and hairstyle in a 
generated image from ProGAN.

■ Considering this issue, the same ProGAN authors 
proposed StyleGAN in 2018. 

https://arxiv.org/pdf/1812.04948.pdf


StyleGAN

■ StyleGAN mainly improves upon the existing 
architecture of Generator network to achieve the 
desired results and keeps Discriminator network and 
everything else untouched.

Generator in ProGAN

These “PixelNorm” 
layer is similar to Batch 

Normalization: It 
normalizes the feature 
vector in each pixel to 

unit length, and is 
applied after the 

convolutional layers in 
the generator. This is 

done to prevent signal 
magnitudes from 

spiraling out of control 
during training.
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StyleGAN

■ StyleGAN mainly improves upon the existing 
architecture of Generator network to achieve the 
desired results and keeps Discriminator network and 
everything else untouched.

■ The new generator has the following novelties:
● The latent vector z is first transformed into what is called 

a vector w = f(z) via a mapping network f.
● w is sent to MLPs (named “A” on the right, two per 

resolution level) that output the style y = (ys, yb).
● On the synthesis network g, a learned constant tensor 

gets sequentially mixed with each level’s style y via an 
AdaIN operation in order to generate a full size image.

● Finally, noise is inserted into g via some MLPs (the “B”s) 
to introduce style variation at a given level of detail. Generator in StyleGAN.



Mixing styles in StyleGAN

■ With StyleGAN we can mix 
the styles of different 
generated images!

■ Here, two sets of images 
were generated from their 
respective latent codes 
(sources A and B).

■ The other images were 
generated by copying a 
subset of styles y from B 
and the rest from A.

■ Coarse y’s are those from 
42 and 82 resolutions.



Mixing styles in StyleGAN

■ Middle and fine y’s are 
from resolutions 162 - 322 
and 642 - 10242, resp.

■ Here we note that:
● Coarse y’s correspond 

to high-level aspects 
such as general hair 
style pose, face shape…

● Middle y’s relate to 
small facial aspects, hair 
style, eyes open/closed.

● Middle y’s brings mainly 
the color scheme and 
microstructure.



Training of StyleGAN and other versions

■ In the StyleGAN paper, the authors also introduce a new dataset of human faces called 
Flickr-Faces-HQ Dataset (FFHQ) consisting of 70,000 high-quality face images with 
which they trained their networks.

■ StyleGAN was improved in a few ways in StyleGAN2 (published in 2019) and StyleGAN3 
(published in 2021). Their main contributions are related to removing weird unexpected 
generated artifacts and make styles be learned in a more natural hierarchical manner.

■ A nice thing about StyleGANs: their codes are available online (here, here and here) and 
many people trained them in other datasets and released the models (here and here)!

https://arxiv.org/pdf/1912.04958.pdf
https://arxiv.org/pdf/2106.12423.pdf
https://github.com/NVlabs/stylegan
https://github.com/NVlabs/stylegan2
https://github.com/NVlabs/stylegan3
https://github.com/justinpinkney/awesome-pretrained-stylegan2
https://pharmapsychotic.com/tools.html


Applications of StyleGAN

Image EditingFace Interpolation Well, Generate Faces (duh!)

■ The ability to generate some many high fidelity controllable face generation has sparkled 
many applications (for the good and for the bad). Some of them are:

http://www.youtube.com/watch?v=uoftpl3Bj6w
http://www.youtube.com/watch?v=6oafly4onok


Exercise (in pairs)

■ The same concept of StyleGAN has been applied to many of image domains other than 
faces (cats, horses, memes…). Here is a website of a collection of artificially generated 
images from various domains (unfortunately, some of the links are broken, here is a link 
for face generation). Play around with them!

https://thisxdoesnotexist.com/
https://this-person-does-not-exist.com/en


Video: AI paintings 

http://www.youtube.com/watch?v=2I30SamNYFs

