
CS3485
Deep Learning for Computer Vision

Lec 19: Advanced GANs

Announcements

■ Final project:
● Groups of 1-4 students.
● Three options for the theme:

i. Do a literature review on the SOTA of some Computer Vision task (like Image
Classification for example).

ii. Try to solve any problem of your choice using Deep Learning (it does not need to be in
Computer Vision, it can be involving audio, text, etc.)

iii. Implement a software that uses DL (does not need to be related to CV).
● The teams should send a proposal the Dec 4th with a problem statement, motivation, the main

tasks and how each student will contribute to it.
● The presentation will be in person on the day/time for our final exam, and it should last for at

least 8 min, such that each student member presents for at least 3 min. It should also present
some sort of demonstration. If some student can’t be present, they should join via zoom (or ask
me for an exception).

● More information on it on the Syllabus and on the website.

■ KLAVIERFEST!

Announcements

Announcements

■ Project Proposal:
● Due on Dec 4th, and there is a submission link on canvas,
● Remember it counts as part of the grade!

■ Info about late submissions on the website (more for next year, actually).
■ Interesting application of dense pose estimation:

http://www.youtube.com/watch?v=Rv0qBbJq4qQ

(Tentative) Lecture Roadmap

Basics of Deep Learning

Deep Learning and Computer Vision in Practice

Intro to Object
Detection

Fast Object
Detection

Intro to Image
Segmentation

Autoencoders Advanced GANs

Applications of Detection
and Segmentation

Image Generation
with GANs

The Attention
Mechanism

Transformers
and ChatGPT

Intro to
Computer Vision

Linear Classifiers and
Perceptron

Multilayer Perceptron Pytorch I – MLPs Convolutional Neural
Networks

Optimization
in Deep Learning

Pytorch II – Images and
Regularization

Data Augmentation
and Deep CNNs

Inception Net and
what CNNs learn

Transfer Learning and
Residual Nets

Adversarial Examples
and Self-supervision

Intro to
MLOps

Image Generation
by Prompt

Misc.
Topics

More interesting GANs

■ Last time we saw how GANs can generate new
digits from the MNIST dataset and new faces.

■ Although interesting, these results were not
realist enough compared to more modern GAN
architectures.

■ Today, we’ll see how modern GANs (such as
StyleGAN) are able to generate visually
stunning high-resolution face images!

■ Before that, we’ll also see how to conditionally
generate new images using GANs which will
provide us with tools to solve many other
problems in image generation.

New faces generated by StyleGAN

Conditional GANs

■ All GAN models we have seen so far model a probability
density in high dimension and provide means to sample
according to it, which is useful for image synthesis only.

■ However, most of the practical applications require the ability
to sample a conditional distribution, i.e., sample new data
conditioned on some information we have at our disposal.

■ For example, we may want to sample a datapoint conditioned
on its class (I may want to sample only new 7’s instead of any
random digit).

■ Conditional GAN, published in 2014, was conceived to adapt
our previous, simple GAN architecture (called Vanilla GAN) to
this setting. New MNIST digits generated

according to their classes.

https://arxiv.org/pdf/1411.1784.pdf

Conditional GANs

Generator
Network (G)

z

Dataset of Real
Images

Discriminator
Network (D)

Is it Fake or
Real?

G(z)

■ Let’s first review our previous GAN approach:
● We have a Generator Network G that takes in a random vector z and produces a new,

generated image G(z).
● We also have a Discriminator Network D that takes in an image as its input and classifies it in

fake (i.e., generated by G) or real (i.e., coming from an image dataset).
● The goal is twofold: (1) train a very good discriminator network and (2) train a generator that

beats this discriminator.

x

Conditional GANs

Ra
nd

om
pa

rt
 (z

)
O

ne
-h

ot
 e

nc
od

in
g

fo

r c
la

ss
 4

 o
ut

 o
f 1

0
 p

os
si

bl
e

Input of G

K + 1 Channels

One channel
filled with 1’s for
the class of the

image.

The other
channels are
filled with 0’s

Input of D■ In Conditional GAN, the same training approach is
taken, but now both generator and discriminator
inputs will carry class information.

■ To do that, we just need to “add more data” to both
inputs. Say we have K classes (K = 10 for MNIST):

● For the Generator input, append to z a vector of K
dimensional one-hot encoding of the class you want
the generated image to be from.

● For the Discriminator input, append K more
channels to the input image such that they work as
an one-encoding of the that image’s class (from
either the image dataset or the generator’s input)*.

* Note that, even if the image is realistic, but the class that image is attached to is not
the correct one the discriminator here should output “fake”.

Image-to-Image Translation

■ We can use the same principle of
conditioning the generation to a class
to create interesting conditions.

■ For example, we may want to generate
a realistic image conditioned in a
certain edge map, i.e., a new image
that has its edges given by the user.

■ This approach will be very useful for the task of Image-to-Image Translation:

Image-to-image translation is the task of taking images from one domain and
transforming them so they have the characteristics of images from another domain.

■ In our example above, we converted an image in the domain of edges to the domain of
realistic RBG images.

Edge Map Edge Source New Image

Pix2Pix

G

D DFake Real

z G(z) x

Training on fake data Training on real data

■ Published in 2016, the Pix2Pix strategy to solve image to image translation involved a
GAN network that used the concepts from Conditional GANs.

■ Here, the difference is that the generator receives an image input z in one domain (edge
map, for example) and outputs the corresponding image on the other domain.

■ The discriminator is then tasked to check if the pairings edge map/image are realistic.

https://arxiv.org/pdf/1611.07004.pdf

Pix2Pix

Edges to Photos

Input Ground Truth Output Input Ground Truth Output

Pix2Pix

Drawings to Photo

Input Output Input Output Input Output Input Output

■ Note that the edge maps don’t need to be realistic. These are the results from when you
input a line drawing to generator trained on edge maps.

Pix2Pix Applications

■ Pix2Pix has been
applied in translation
domains beyond that of
edges to RGB images
(but always following
the same training
strategy).

■ Here, you can have the
generator generate
aerial photos from a
map or maps from
aerial photos.

Map to Aerial Photo Aerial Photo to Map

Input Output Input Output

Pix2Pix Applications

■ In a similar way, Pix2Pix was used to generate new building facades according to a
image of facade labels, i.e., positions of windows, doors, roofs, etc.

■ You can actually try out some of these algorithms yourself! In this link, you’ll find the
edge to image and the facade labels to image applications.

Facade labels to Photo

Input

Ground Truth Output Input Ground Truth OutputInput

https://affinelayer.com/pixsrv/

Pix2Pix Applications

■ Pix2Pix can be applied to image generation conditioned on a given semantic
segmentation.

Segmentation to Photo

Input Ground Truth Output Input Ground Truth Output

Pix2Pix Applications

■ The principles of Pix2Pix have also been applied to many artistic endeavors.

GauGAN art generatorLearning to see work piece

http://www.youtube.com/watch?v=p5U4NgVGAwg
http://www.youtube.com/watch?v=MXf7jycXLgM

Pix2Pix Applications

Ground Truth Output Input Ground Truth OutputInput

Thermal Image to Photo

Ground Truth Output Input Ground Truth OutputInput

Day Image to Night Image

Pix2Pix Applications

Season changer

Pix2Pix Applications

Input Output Input Output Input Output

Photo Enhancement (post-hoc focusing) and Painting Style Transfer

Input Monet Van Gogh Cezanne Ukyio-e

Exercise (in pairs)

■ Play with Pix2Pix! You can go to this link and try out some of their algorithms. What do
your notice when you play with it?

https://affinelayer.com/pixsrv/

Getting high resolution images

■ We saw that using GANs we can generate small images in various settings, but how can
one generate high resolution images (images that contain fine level visual features)?

■ Standard GANs could work here, but they would not be practical to generate high quality
images (1024 × 1024 size) because of their architecture limitations.

■ The first attempt to solve this issue was proposed in 2017 and was called ProGAN
(Progressive Generative Adversarial Networks).

Generated face using ProGAN.

https://arxiv.org/pdf/1710.10196v3.pdf

ProGAN

■ ProGAN is based on an efficient
way (in terms of training time) to
train a GAN for High Res images.

■ Instead of attempting to train all
layers of the generator and
discriminator at once, ProGAN trains
them one layer at a time, to learn
progressively higher resolution
versions of the images.

■ When the images generated in
given resolution are good enough,
we proceed to the next resolution.

ProGAN

■ ProGAN is based on an efficient
way (in terms of training time) to
train a GAN for High Res images.

■ Instead of attempting to train all
layers of the generator and
discriminator at once, ProGAN trains
them one layer at a time, to learn
progressively higher resolution
versions of the images.

■ When the images generated in
given resolution are good enough,
we proceed to the next resolution.

ProGAN

■ ProGAN is based on an efficient
way (in terms of training time) to
train a GAN for High Res images.

■ Instead of attempting to train all
layers of the generator and
discriminator at once, ProGAN trains
them one layer at a time, to learn
progressively higher resolution
versions of the images.

■ When the images generated in
given resolution are good enough,
we proceed to the next resolution.

ProGAN

■ ProGAN is based on an efficient
way (in terms of training time) to
train a GAN for High Res images.

■ Instead of attempting to train all
layers of the generator and
discriminator at once, ProGAN trains
them one layer at a time, to learn
progressively higher resolution
versions of the images.

■ When the images generated in
given resolution are good enough,
we proceed to the next resolution.

ProGAN

■ ProGAN is based on an efficient
way (in terms of training time) to
train a GAN for High Res images.

■ Instead of attempting to train all
layers of the generator and
discriminator at once, ProGAN trains
them one layer at a time, to learn
progressively higher resolution
versions of the images.

■ When the images generated in
given resolution are good enough,
we proceed to the next resolution.

ProGAN

■ ProGAN is based on an efficient
way (in terms of training time) to
train a GAN for High Res images.

■ Instead of attempting to train all
layers of the generator and
discriminator at once, ProGAN trains
them one layer at a time, to learn
progressively higher resolution
versions of the images.

■ When the images generated in
given resolution are good enough,
we proceed to the next resolution.

ProGAN

■ ProGAN is based on an efficient
way (in terms of training time) to
train a GAN for High Res images.

■ Instead of attempting to train all
layers of the generator and
discriminator at once, ProGAN trains
them one layer at a time, to learn
progressively higher resolution
versions of the images.

■ When the images generated in
given resolution are good enough,
we proceed to the next resolution.

ProGAN

■ ProGAN is based on an efficient
way (in terms of training time) to
train a GAN for High Res images.

■ Instead of attempting to train all
layers of the generator and
discriminator at once, ProGAN trains
them one layer at a time, to learn
progressively higher resolution
versions of the images.

■ When the images generated in
given resolution are good enough,
we proceed to the next resolution.

ProGAN

■ ProGAN is based on an efficient
way (in terms of training time) to
train a GAN for High Res images.

■ Instead of attempting to train all
layers of the generator and
discriminator at once, ProGAN trains
them one layer at a time, to learn
progressively higher resolution
versions of the images.

■ When the images generated in
given resolution are good enough,
we proceed to the next resolution.

ProGAN

■ ProGAN is based on an efficient
way (in terms of training time) to
train a GAN for High Res images.

■ Instead of attempting to train all
layers of the generator and
discriminator at once, ProGAN trains
them one layer at a time, to learn
progressively higher resolution
versions of the images.

■ When the images generated in
given resolution are good enough,
we proceed to the next resolution.

ProGAN

■ ProGAN is based on an efficient
way (in terms of training time) to
train a GAN for High Res images.

■ Instead of attempting to train all
layers of the generator and
discriminator at once, ProGAN trains
them one layer at a time, to learn
progressively higher resolution
versions of the images.

■ When the images generated in
given resolution are good enough,
we proceed to the next resolution.

ProGAN

■ The progressive growth in ProGAN time allowed
the training on much bigger datasets of very
large images in a much quicker time compared to
when the layers were fixed.

■ Although ProGAN expanded vanilla GANs ability
to generate high-res images, still lacked the
control over the styling of the output.

■ This means that we couldn’t change specific
features such pose, face shape and hairstyle in a
generated image from ProGAN.

■ Considering this issue, the same ProGAN authors
proposed StyleGAN in 2018.

https://arxiv.org/pdf/1812.04948.pdf

StyleGAN

■ StyleGAN mainly improves upon the existing
architecture of Generator network to achieve the
desired results and keeps Discriminator network and
everything else untouched.

Generator in ProGAN

These “PixelNorm”
layer is similar to Batch

Normalization: It
normalizes the feature
vector in each pixel to

unit length, and is
applied after the

convolutional layers in
the generator. This is

done to prevent signal
magnitudes from

spiraling out of control
during training.

StyleGAN

■ StyleGAN mainly improves upon the existing
architecture of Generator network to achieve the
desired results and keeps Discriminator network and
everything else untouched.

Generator in StyleGAN.

StyleGAN

■ StyleGAN mainly improves upon the existing
architecture of Generator network to achieve the
desired results and keeps Discriminator network and
everything else untouched.

■ The new generator has the following novelties:
● The latent vector z is first transformed into what is called

a vector w = f(z) via a mapping network f.

Generator in StyleGAN.

StyleGAN

■ StyleGAN mainly improves upon the existing
architecture of Generator network to achieve the
desired results and keeps Discriminator network and
everything else untouched.

■ The new generator has the following novelties:
● The latent vector z is first transformed into what is called

a vector w = f(z) via a mapping network f.
● w is sent to MLPs (named “A” on the right, two per

resolution level) that output the style y = (ys, yb).

Generator in StyleGAN.

StyleGAN

■ StyleGAN mainly improves upon the existing
architecture of Generator network to achieve the
desired results and keeps Discriminator network and
everything else untouched.

■ The new generator has the following novelties:
● The latent vector z is first transformed into what is called

a vector w = f(z) via a mapping network f.
● w is sent to MLPs (named “A” on the right, two per

resolution level) that output the style y = (ys, yb).
● On the synthesis network g, a learned constant tensor

gets sequentially mixed with each level’s style y via an
AdaIN operation in order to generate a full size image.

Generator in StyleGAN.

StyleGAN

■ StyleGAN mainly improves upon the existing
architecture of Generator network to achieve the
desired results and keeps Discriminator network and
everything else untouched.

■ The new generator has the following novelties:
● The latent vector z is first transformed into what is called

a vector w = f(z) via a mapping network f.
● w is sent to MLPs (named “A” on the right, two per

resolution level) that output the style y = (ys, yb).
● On the synthesis network g, a learned constant tensor

gets sequentially mixed with each level’s style y via an
AdaIN operation in order to generate a full size image.

● Finally, noise is inserted into g via some MLPs (the “B”s)
to introduce style variation at a given level of detail. Generator in StyleGAN.

Mixing styles in StyleGAN

■ With StyleGAN we can mix
the styles of different
generated images!

■ Here, two sets of images
were generated from their
respective latent codes
(sources A and B).

■ The other images were
generated by copying a
subset of styles y from B
and the rest from A.

■ Coarse y’s are those from
42 and 82 resolutions.

Mixing styles in StyleGAN

■ Middle and fine y’s are
from resolutions 162 - 322
and 642 - 10242, resp.

■ Here we note that:
● Coarse y’s correspond

to high-level aspects
such as general hair
style pose, face shape…

● Middle y’s relate to
small facial aspects, hair
style, eyes open/closed.

● Middle y’s brings mainly
the color scheme and
microstructure.

Training of StyleGAN and other versions

■ In the StyleGAN paper, the authors also introduce a new dataset of human faces called
Flickr-Faces-HQ Dataset (FFHQ) consisting of 70,000 high-quality face images with
which they trained their networks.

■ StyleGAN was improved in a few ways in StyleGAN2 (published in 2019) and StyleGAN3
(published in 2021). Their main contributions are related to removing weird unexpected
generated artifacts and make styles be learned in a more natural hierarchical manner.

■ A nice thing about StyleGANs: their codes are available online (here, here and here) and
many people trained them in other datasets and released the models (here and here)!

https://arxiv.org/pdf/1912.04958.pdf
https://arxiv.org/pdf/2106.12423.pdf
https://github.com/NVlabs/stylegan
https://github.com/NVlabs/stylegan2
https://github.com/NVlabs/stylegan3
https://github.com/justinpinkney/awesome-pretrained-stylegan2
https://pharmapsychotic.com/tools.html

Applications of StyleGAN

Image EditingFace Interpolation Well, Generate Faces (duh!)

■ The ability to generate some many high fidelity controllable face generation has sparkled
many applications (for the good and for the bad). Some of them are:

http://www.youtube.com/watch?v=uoftpl3Bj6w
http://www.youtube.com/watch?v=6oafly4onok

Exercise (in pairs)

■ The same concept of StyleGAN has been applied to many of image domains other than
faces (cats, horses, memes…). Here is a website of a collection of artificially generated
images from various domains (unfortunately, some of the links are broken, here is a link
for face generation). Play around with them!

https://thisxdoesnotexist.com/
https://this-person-does-not-exist.com/en

Video: AI paintings

http://www.youtube.com/watch?v=2I30SamNYFs

